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In  Weinbaum et al. (1976) a simple new pressure hypothesis is derived which enables 
one to take account of the displacement interaction, the geometrical change in 
streamline radius of curvature and centrifugal effects in the thick viscous layers 
surrounding two-dimensional bluff bodies in the intermediate Reynolds number range 
O( 1 )  < Re < O( 102) using conventional Prandtl boundary-layer equations. The new 
pressure hypothesis states that the streamwise pressure gradient as a function of 
distance from the forward stagnation point on the displacement body is equal to the 
wall pressure gradient as a function of distance along the original body. This 
hypothesis is shown to be equivalent to stretching the streamwise body co-ordinate 
in conventional first-order boundary-layer theory. The present investigation shows 
that the same pressure hypothesis applies for the intermediate Reynolds number 
flow past axisymmetric bluff bodies except that the viscous term in the conventional 
axisymmetric boundary-layer equation must also be modified for transverse cur- 
vature effects O(S) in the divergence of the stress tensor. The approximate solutions 
presented for the location of separation and the detailed surface pressure and 
vorticity distribution for the flow past spheres, spheroids and paraboloids of 
revolution a t  various Reynolds numbers in the range 0 ( 1 )  < Re < 0(102) are in 
good agreement with available numerical Navier-Stokes solutions. 

1. Introduction 
In an earlier paper by the authors (Weinbaum et al. 1976, hereafter referred to as 

WKPG) a new approximate theory was presented for the two-dimensional flow past 
smoothly contoured bluff objects in the intermediate Reynolds number regime 
O( 1)  < Re c O( lo2), where the viscous displacement of the outer flow produced by 
the body boundary layer and wake is of comparable magnitude to that produced by 
the original body and centrifugal effects in the thick viscous layer enshrouding the 
body cannot be neglected. For finite bodies the upper limit of validity of the new 
approximate theory is determined by the condition that the wake separation bubble 
behind the body be steady and laminar. This limit has been experimentally observed 
to occur at Reynolds numbers of approximately 60 for circular cylinders and 130 for 
spheres (Batchelor 1967, p. 51). For semi-infinite bodies without separation the new 
theory provides a smooth transition to the solutions obtained from Prandtl’s classical 
high Reynolds number laminar boundary-layer theory. 
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Flows in the intermediate Reynolds number regime of interest in the present study 
have long defied simpler theoretical treatment. Theoretical approaches from the 
low Reynolds number end of the regime, which have been based on Oseen-type 
linearizations, have not proved fruitful for Re > O(1) because of the inability of an 
approximation linear in the velocity to describe adequately the separation and wake- 
formation phenomena on bluff bodies. Theoretical approaches from the upper end 
of the intermediate Reynolds number range have been based largely on the concepts 
of higher-order boundary-layer theory (Van Dyke 1962). This theory similarly breaks 
down because it is a successive approximation scheme based on the potential flow 
past the original body, which in general will depart substantially from the effective 
displacement body with its wake at these Reynolds numbers. 

At the heart of the new intermediate Reynolds number theory for axisymmetric 
flow described herein is a new simplifying pressure hypothesis derived in WKPG that 
approxiniately relates the pressure gradients along the surfaces of the original body and 
the effective displacement body when centrifugal forces and viscous displacement 
interaction are considered. Earlier numerical studies by Gluckman (1971) and Werle C 
Worman (1972) had demonstrated that, if either experimentally measured or numeri- 
cally generated Navier-Stokes surface pressure distributions were used to drive the 
Prandtl boundary-layer equations, good predictions of the separation-point location 
and the surface vorticit,y distribution were possible for the flow past a circular cylinder 
for the entire range of Reynolds numbers where a steady wake separation bubble 
exists. This suggested that conventional boundary-layer equations were still an 
adequate description of the growth of the viscous layer provided that the surface 
pressure boundary condition was modified to take account of the centrifugal forces 
that were omitted from the boundary-layer equations, the approximate change in 
radius of curvature of the streamlines as one moves outwards along a normal to 
the body surface, and the effective enlargement of the body as seen by the inviscid 
outer flow. Thus the fundamental question asked in WKPG was whether one could 
generate, using the Prandtl boundary-layer equations, a displacement body which 
had a pressure gradient along its surface which was the same as the pressure gradient 
obtained from a higher-order approximation to the Navier-Stokes equations 
[WKPG, equations (2) and (3)] in which centrifugal forces and the normal variation 
in streamline curvature were retained. This effective pressure gradient would act 
through the centroid of vorticity (Lighthill 1958) of the local velocity profile and 
produce the same displacement-thickness distribution as the higher-order set of 
equations. 

In  answer to the question just posed, it is shown in WKPG that the streamwise 
pressure gradient ap/as* along the displacement surface obtained using Prandtl 
boundary -layer theory and the conventional construction of the displacement body 
will be equal to the streamwise pressure gradient along the displacement body ob- 
tained by integrating a higher-order approximation to the Navier-Stokes equations 
[WKPG, equations (2) and (3)] in which centrifugal forces and the normal pressure 
field are included provided that 

Equation (1) relates the wall pressure gradient in the Prandtl boundary-layer equation 
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dplds, to the wall pressure gradient aplas,, in the higher-order approximation 
to the Navier-Stokes equations for the flow past the original body. Here Re is a char- 
acteristic Reynolds number based on the free-stream velocity and body dimensions, 
s and n are streamline and normal co-ordinates scaled by a characteristic boundary- 
layer thickness So, R, and R* are the local radii of curvature of the wall and the 
displacement body and the asterisks denote conditions at the displacement surface. 
The first term in (1) is a centrifugal correction due to the increase in streamline 
radius of curvature as one proceeds away from the wall while the second term arises 
from the streamwise variation in curvature of the wall itself. Since s is scaled by 
So (see WKPG for a further discussion of this point), the second term in ( I )  will, in 
general, be small compared with the first unless Rw changes to lowest order on 
a length scale O(S,). For a sphere this term is identically zero. Thus for smoothly 
contoured bodies without sharp corners (1) reduces to 

where in the second equality we have used the approximation that A* = (R*/Rw) A,,, 
and where, in defining a%*, we have assumed that the streamlines are locally parallel 
to the body so that the local radius of curvature of the streamlines can be approxi- 
mated by R = R, + Re-&. 

Equation ( 2 )  states that if the Prandtl boundary-layer equations are used to 
generate a displacement body in which viscous-layer centrifugal effects are included 
then, except for a constant of integration, the pressure as a function of distance 
along the surface of the original body should be equal to the pressure as a function of 
distance along the displacement body. The pressure transformation from the dis- 
placement body back to the surface of the original body is thus one that preserves 
arc length, i.e. A, = a%*. This pressure mapping is equivalent to stretching the 
differential distance element along the body surface by a factor R*/Rw in the 
expression for the wall pressure gradient. 

The principal simplifying assumptions used in the derivation of (1) and (2) are that 
the local radius of curvature of the displacement body is equal to the local radius of 
curvature of the original body plus the local displacement thickness and that viscous 
corrections to the normal pressure field are O( Re-l) and can therefore be neglected. 
The basic difference between the two-dimensional analysis presented in WKPG and 
the axisymmetric theory described herein is the presence of transverse curvature 
effects in the continuity equation and the viscous terms of the streamwise momentum 
equation. These differences affect the normal pressure field only to O(Re-l) and have 
been omitted. 

The new pressure hypothesis has been tested against a wide variety of two-dimen- 
sional numerical Navier-Stokes solutions in WKPG. Remarkably good agreement 
was obtained after a single iteration for the surface pressure distribution for both 
semi-infinite and finite bodies (parabolas and circular and elliptic cylinders) over the 
entire range of Reynolds numbers where these finite-difference solutions exist. 
Equally good agreement is obtained in the present study for the flow past paraboloids 
of revolution, spheres and spheroids. 

The other novel feature of the new approximate theory is the successive approxi- 
mation scheme used for determining the inner and outer flow solutions when both 
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the surface pressure distribution and the effective displacement body are unknown. 
Owing to the large distortion in the effective body shape caused by the thick viscous 
layers and wake, one seeks an iterative solution procedure in which the initial guess 
for the surface pressure distribution already takes into account in an approximate 
manner the displacement and centrifugal effects of the viscous flow region. The first 
trial solution for the potential-flow pressure distribution is thus based on a family of 
enlarged geometrically similar bodies whose local radius increases in accordance with 
the growth of the viscous displacement thickness up to the station in question, the 
surface pressure gradient being modified to satisfy the new pressure hypothesis (2). 
The solution for the outer flow for second- and higher-order iterations is complicated 
by the fact that i t  requires a potential-flow solution for the flow past a boundary of 
arbitrary symmetric shape. Accurate but approximate solution techniques based on 
the boundary method have been developed in WKPG for two-dimensional potential 
flow. These techniques, which differ for finite and semi-inhite bodies, are extended 
in the present study to axisymmetric potential flows. 

This extended introduction has been given to provide continuity between the 
present investigation and the earlier two-dimensional study. Much of the theoretical 
development for axisymmetric flow parallels that already presented in WKPG. Only 
the important differences in this development will be presented in detail herein. The 
reader is referred to this earlier work for a more complete description of the basic 
solution procedure and discussion of the fundamental simplifying assumptions. 

Section 2 states the boundary-value problems for the viscous and inviscid flow 
regions. The general solution procedure is briefly summarized in $3. Sections 4, 5 and 
6 describe the application of the new displacement interaction model to paraboloids 
of revolution, spheres and prolate spheroids and present detailed numerical com- 
parisons with existing exact Navier-Stokes solutions for the flow past these bodies. 

2. The boundary-value problem for axisymmetric flow 
In accord with the foregoing discussion, the governing equations for the thick 

viscous layers are the conventional axisymmetric boundary-layer equations correct 
to O(6,) with the streamwise pressure gradient modified in accordance with the new 
pressure hypothesis (2). These equations differ from the lowest-order Prandtl 
boundary-layer equations for two-dimensional flow in that the streamwise momentum 
and continuity equations contain viscous corrections O(6,) , first derived by Millikan 
(1932), which arise from transverse-curvature contributions to the divergence of the 
stress tensor and velocity field respectively. The equations in question are 

Here R is related to the normal boundary co-ordinate y (see figure 1) by 

R = R , + y  cos B 
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FIQURE 1. Boundary-layer co-ordinate aystem. 

and from (2) the wall pressure gradient dp/dx is given by 

dpldx = dp/dx*, (6a) 

with x = x*. ( 6 b )  

Here x* is the distance s* measured.from the forward stagnation point of the dis- 
placement body 

One observes that, in the limit R -+ co, (3) reduces to the classical two-dimensional 
equation given by Prandtl, whereas for E = in, (3) and (4) reduce to the governing 
equations for an axisymmetric stagnation-point flow. From (6) the pressures as 
functions of distance along the original and displacement bodies respectively are 
equal except for an additive constant due to viscous losses in total pressure along the 
streamline passing through the forward stagnation point. Since r* > r, the local 
polar co-ordinate O is stretched such that O > O* as shown in figure 1. 

The effective displacement body is constructed by adding to the original body 
surface the displacement-thickness distribution 

S*(x) = - jd(r)( U(x) - u) dy 
U(X) 0 

(7)  

obtained from the solution of (3) for the velocity profile. This differs from the con- 
ventional method of constructing the displacement body in that the inviscid pressure 
gradient at a position x* (angular location 0* )  on the displacement surface is used to 
calculate the displacement thickness S* a t  a position x (angular location 0 )  on the 
original body in accord with the pressure mapping described by (6). 

The inviscid pressure distribution and the velocity U(O*) at the surface of the 
displacement body are determined from the solution of the generalized axisymmetric 
potential-flow equation 

where $ is the inviscid stream function. This equation satisfies the usual inviscid 
boundary condition that the normal component of the velocity vanishes a t  the 
displacement surface : 

(8) D2$ = 0, 

(9) w(x*) = 0 on r = r*. 

Since the solution for S*(x) depends on the solution for p ( z )  and both are unknown, 
the solution of (3)-( 9) represents a coupled nonlinear boundary-value problem. In 
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essence, we wish to solve (8) subject to a known boundary condition (9) along an 
unknown surface, the effective displacement body. This body is determined from the 
solution of (3) and (4), in which the surface pressure distribution satisfies the pressure 
hypothesis (6) and must be obtained through a process of iterative approximation. 

3. Solution procedure 
The solution procedure developed for solving the boundary-value problem presented 

in $2 is basically the same as that described in detail in WKPG for the two-dimensional 
case. Below we shall only summarize the method for generating the first trial solution 
for the displacement body and the iteration procedure for obtaining a converged 
solution and refer the reader to WKPG for the motivation and rationale behind the 
development of the solution techniques. 

3.1. Pirst trial solution for the displacement body 

( 1 )  Both the displacement thickness and the pressure gradient at  the forward 
stagnation point are unknown. To approximate the displacement body a family of 
geometrically similar bodies with the same focal point as the original body is selected. 
The pressure or velocity gradient at  the forward stagnation point on the displacement 
body is written in terms of the unknown displacement thickness and applied at the 
surface of the original body using the pressure-stretching hypothesis (6). This 
expression is then solved simultaneously with (3)  applied a t  the forward stagnation 
point. The solution technique is illustrated in $ 3.3 for the case of a sphere. 

(2) Having obtained this first trial solution for S*, dpldx and the velocity profile at  
the forward stagnation point, one performs a forward numerical integration of (3). 
For present purposes it was deemed satisfactory to use a momentum-integral 
approximation to (3) rather th&n the more accurate finite-difference solutions in view 
of the other approximations introduced. At each forward integration step the pressure 
gradient is represented by the local pressure gradient for inviscid flow past the 
geometrically similar body whose local radius from the focal point of the original 
body is equal to that of the displacement body. From (6) this pressure gradient is also 
the pressure gradient along the original body surface. 

(3) The displacement-thickness distribution obtained from the solution described 
in step 2 is now added on normally to the surface of the original body. Because of the 
pressure mapping ( 6 b )  the pressure gradient at a position x* on the displacement 
body is used to calculate the displacement thickness at  the position x = X* on the 
original body as shown in figure 1.  This completes the first trial solution for the 
effective displacement body. 

3.2. The iteration procedure for a converged solution 

(1)  As we shall observe in the results, the first trial solution just outlined provides 
a reasonable approximation to the displacement surface since it qualitatively includes 
the streamwise co-ordinate straining required to describe curvature effects. However, 
it  provides a poor detailed description of the surface pressure distribution since the 
actual shape of the displacement body and its wake can depart significantly from the 
family of geometrically similar bodies used in the first trial solution. The first step 
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towards obtaining a converged solution is thus to obtain a much more accurate 
representation of the potential-flow pressure distribution on the displacement body. 
This task is equivalent to solving (8) and (9) for an arbitrary boundary shape, since 
the displacement body obtained in $3.1 will not in general have a simp10 analytic 
representation. An approximate combined numerical and analytical solution tech- 
nique based on the boundary method has been developed for this purpose and is 
described in $3.4. 

(2) The potential-flow pressure distribution on the first-order displacement body 
obtained in step 1 is now mapped back to the surface of the original body using ( 6 b ) .  
The momentum-integral-equation form of (3) is then solved again using this new 
pressure distribution. 

(3) The new solution for the displacement-thickness distribution found in step 2 
is now added on normally to the surface of the original body, in the same manner as 
before, to obtain the second-order approximation to the displacement body. 

(4) Steps 1-3 are now repeated to obtain the third- and higher-order approximations 
to the displacement body until convergence in either the body shape or the surface 
pressure distribution is achieved to within predetermined limits. 

In accord with the preceding solution outline the approximate equation for the 
viscous layer is the momentum-integral equation obtained from (3) and (4). This 
equation can be derived either by a direct integration of (3) and (4) (Millikan 1932) 
or by using a control-volume approach (Gluckman 1971). The desired equation is 

S* = - (Ue-u) dy, the displacement thickness, s” where 

ue 0 

u(U, - u)  dy, the momentum thickness, 
8 =-so” 1 

u: 
SadU, 

A = -- , the velocity-profile shape factor, 
v ax 

= [i - ( d R / d ~ ) ~ ] & ,  

Fl = d[(A,-A,)  U p ] / d x + ( # - A , )  ueup, 
F, = (A2 - A,) U,W, 

e2 2ef (fz + 2eg) + 2(eh + f g )  + ( g 2  + 2gh) 2gh hL2 +x+-, 10 A,  =a+-+  5 6 7 8 

Y‘Fz ) (10) R U,(AvUL)i ’ 

A ,  =3+z+-+-  e f g h  
5 6 ‘  

Equation (10) would be identical to the integral form of the high Reynolds number 
axisymmetric boundary-layer equation were it not for the last two terms in the 
bracket on the right side. These two terms represent transverse-curvature effects 
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O(6,). The coefficients e ,  f, h and h in ( 1 2 )  are derived from the Pohlhausen quartic 
profile 

with 
(13a-d) 

This profile provides a reasonable description up to separation and a solution of 
undetermined accuracy beyond the separation point. One notes, however, that the 
smoothly varying polynomial profile is more likely to provide at least a qualitatively 
realistic description of the separated flow a t  the intermediate Reynolds numbers 
considered herein, where steep vorticity gradients are not present, than a t  high Re, 
where there is a thin boundary-layer-like structure both in the reversed flow near the 
wall and in the separated free shear layers. 

The ratios O/S and 6*/6 are given for completeness : 

6* 3 A 
6 10 120' 
-=---. 

3.3.  First trial solution for the forward stagnation point 

To elucidate the solution procedure described under step 1 in $3.1, we consider the 
stagnation-point flow on a sphere of unit radius. The geometrically similar displace- 
ment bodies considered are concentric spheres of radius r* = 1 + 6*. Both 6* and 
dU/dx at the forward stagnation point are unknown. The potential-flow solution for 
the velocity on the surface of a geometrically similar displacement sphere of radius 

( 1 5 )  
r* is 

where 0 and 6'* are related by re = r*8* from (6b) .  The velocity gradient a t  the 
forward stagnation point on the original body surface obtained from (15) and the 

U, = +5JW sin 8*, 

pressure transformation (6)  is du. = $uoo e*. 
dx 1+6* 

Both S* and UL are unknown a t  the forward stagnation point. The solution of (10) 
at the forward stagnation point requires that 

Inserting the definitions (12) and (13) into (17) one obtains an expression for the 
velocity-profile shape factor A at the forward stagnation point : 

1 
= 2 ~ , - 3 ~ 1 + 2 )  -:I. 

Equation (18a)  is an interesting new result because it shows that the effect of the 
transverse-curvature terms in (10) is to make the shape factor and hence the velocity 
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Reynolds 
number A,, 

co 4.7160 
130 4.318933 
100 4.271017 
60 4.16381 3 
40 4.064817 
16 3.772366 

8 3.64948 
6 3.36939 

TABLE 1. hi,, for various Reynolds numbers for a sphere. 

10 3.631 787 

profile a t  the forward stagnation point a function of Reynolds number in contrast 
to the two-dimensional stagnation-point solution considered in WKPG. Table 1 
shows the results for Afsp for various Reynolds numbers based on sphere diameter. 
As can be seen from table 1 the results for large Reynolds numbers asymptotically 
approach the high Reynolds number, boundary-layer result Afsp = constant = 4.716. 

The displacement thickness at the forward stagnation point can be calculated 
from 

where 

S*(O) = -+ ( -+Re)  G G2 G 4 , 
2Re 4Re2 

S*(O)  thus depends on the Reynolds number and the body geometry. 

3.4. Inviscid flow past the displacement body 

The crucial step in the iterative approximation procedure used to obtain a converged 
solution is the development of a simple yet accurate approximate technique for 
determining the flow past smoothly contoured non-analytic boundary shapes. In  
our earlier work (WKPG) an approximate technique was developed for two- 
dimensional potential flows in which the displacement body (including the wake) was 
represented by an internal distribution of line sources and sinks whose strengths and 
locations were determined using a boundary-method approach in which inviscid 
boundary conditions are satisfied a t  discrete points on the body. The detailed 
application of the boundary method developed differed depending on whether the 
aspect ratio of the body was low or high (this included semi-infinite bodies). Follow- 
ing this earlier development one now starts with an unknown finite distribution of 
N point sources and sinks of strengths mi located at  positions xi along the axis of 
symmetry of the body and placed in a uniform stream. The stream function for this 
flow which satisfies (8) is 

x - x i  m 

@ = -U,R2+ 2 mi 
2-1 ([(x -xi)2 + R21*- I)' 

where (x, R )  here represent cylindrical polar co-ordinates. For the flow past bodies of 
low and moderate aspect ratio, such as a sphere, one finds that a surprisingly good 
representation of the desired @ = 0 boundary shape can be obtained using only four 
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equally spaced boundary points between flow attachment and separation if both mi 
and xi are left unspecified and the series in (19) is truncated at N = 2. The accuracy 
of this simple representation will be discussed later in connexion with figures 3(a) 
and (b ) .  

For the flow past semi-infinite bodies, such as the family of paraboloids of revolu- 
tion considered herein, or finite bodies of high aspect ratio, many more boundary 
points are required for an accurate curve fit in which the $ = 0 streamline does not 
exhibit wavelike undulations. The solution of the matrix of equations derived from 
(1  9) when many boundary points are required is extremely tedious if both mi and 
xi are treated as unknowns, since the xi appear nonlinearly. A much simpler procedure 
for these extended bodies is to specify the source-sink locations xi and leave only the 
values of mi to be determined, since these constants appear linearly in (19). A con- 
venient but arbitrary selection of boundary points and source locations in this 
procedure is to position the singularities directly below the boundary points in 
one-to-one correspondence. Employing standard matrix reduction schemes for 
systems of linear equations, one can easily handle as many as 100 boundary points 
using less than a second of computer time. 

4. Paraboloids of revolution 
As the first application of the new approximate theory described in $$2 and 3, we 

consider the uniform viscous flow past axisymmetric paraboloids of revolution whose 
surface is defined by 

a t  various Reynolds numbers. This simple body shape, for which separation does not 
occur, provides a convenient axisymmetric geometry to test the basic hypothesis 
of the new model with existing finite-difference solutions of the Navier-Stokes 
equations (Davis & Werle 1972) and conventional boundary-layer theory. 

The family of geometrically similar axisymmetric paraboloids used to generate 
the surface pressure distribution in (10) for the construction of the first guess for the 
displacement body is given by 

(20) R2 = 4 ( 1 + ~ )  

R2 = 4 C 2 ( X + C 2 ) .  (21) 

For c = 1 this reduces to (20) whereas for c > 1 one obtains a family of geometrically 
enlarged paraboloids with a common focal point at the origin. 

The speed along the surface of the paraboloid defined by (21) is 

q = u = u, cosg(n-f3*). (22) 

The potential-flow solution (22) replaces (15) in the first trial solution for the flow 
at the forward stagnation point and is also used to approximate the local pressure 
gradient in (1  0)  as described in step 2 of the procedure for determining the first trial 
solution for the displacement body. In applying the pressure mapping ( 6 )  we have 
related the polar angles 6' and 8* measured from the forward stagnation point along 
the surfaces of the original body and the effective displacement body by the arc- 
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FIGURE 2.  Surface pressure distribution for a paraboloid of revolution. (a) Re, = 10: -, 
kt -order  approximation ; - - - , second-order boundary-layer theory; - - - , Davis & 
Werle (1972); - x -, potential flow around original body. (6 )  Re, = 100: ~ , Davis 
& Werle (1972); - - - , potential flow around original body; - - - , first-order approximation. 
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In the discussion beneath (6) it  was mentioned that the pressure distributions as 
functions of distance along the original and displacement surfaces are equal to within 
an additive constant due to the viscous loss in total pressure along the stagnation 
streamline, In  WKPG an expression for the increase in the wall pressure coefficient 
due to viscous losses is developed. This result, which is also valid for axisymmetric 
flow, is 

where aV,/@ is the velocity gradient normal to the displacement thickness, and the 
Reynolds number is based on the radius of curvature R, at the forward stagnation 
point. For a paraboloid this is equal to twice the focal radius. 

In  figures 2(a)  and (b )  we have compared the results of the present approximate 
model with the numerical Navier-Stokes solutions of Davis & Werle (1972) for the 
surface pressure distribution on a paraboloid at a Reynolds number of 10 and 100. 
The importance of the viscous pressure losses predicted by (24) and the streamwise 
stretching of the body surface co-ordinate required by the pressure hypothesis (6) are 
particularly evident for the Be = 10 flow. The potential-flow pressure distribution for 
the inviscid flow past the original body considerably lags the Navier-Stokes solution 
for the surface pressure over the entire body. The inclusion of viscous-layer displace- 
ment effects using conventional axisymmetric boundary-layer theory to construct the 
displacement body and no co-ordinate stretching produces a curve which is nearly 
identical to the potential flow past the original body, while the inclusion of the viscous 
pressure losses from ( 2 4 )  serves only to elevate the surface pressure distribution in 
the region of the forward stagnation point. A very substantial improvement in the 
agreement with the exact Navier-Stokes solutions is achieved, however, with the 
first-order approximation to the displacement body obtained using the new pressure 
stretching hypothesis and the viscous correction for the pressure loss across the layer. 
The first-order approximation is obtained by curve fitting the zeroth-order dis- 
placement body using (19) and then mapping the pressure back to the body surface 
using (6). A typical curve fit employing 12 boundary points is able to generate 
a 9 = 0 boundary streamline which is nearly indistinguishable from the desired 
shape. Also shown in figure 2 (a)  for comparison is the pressure distribution obtained 
using second-order boundary-layer theory, a conventional construction of the 
displacement body and no co-ordinate straining. 

5.  Spheres 
A much more rigorous test of the new approximate theory is the flow past a sphere 

in the Reynolds number range 5 to approximately 130, where a closed steady wake 
separation bubble is observed in both experiments and numerical Navier-Stokes 
solutions. 

The solution scheme for spheres has already been described in detail in $3. 
Equation (lo), when integrated using the surface velocity distribution (15), yields 
the first trial solution for the displacement body. This body is illustrated in figures 3 (a) 
and ( b )  for an Be of 10 and 40. Also shown in these figures is the approximate solution 
for the inviscid flow past this displacement body obtained using (19) with N = 2, as 
discussed in $3.4. The four match points used are denoted by asterisks. The last 
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FIGURE 3. Stream-function fit of the displacement body for a sphere. -, first-order 
approximation; A ,  stream-function fit; *, match points. (a)  Re, = 10. (b) Re, = 40. 

asterisk denotes the point of separation. The surprisingly good approximation that 
can be obtained for the displacement body using only two source-sink singularities 
is clearly evident in these figures. 

Figures 4(a) and ( b )  show the displacement bodies obtained by the successive 
iteration procedure described in 3 3.4. The significant deviation between the first- and 
higher-order approximations arises because the second- and higher-order approxi- 
mations predict separation a t  a smaller angle 4 from the rear stagnation point. This 
is shown in figure 5, where we have compared the theoretically predicted location of 
separation as a function of Reynolds number with available Navier-Stokes solutions. 
The difference between second- and higher-order approximate solutions is in general 
very small as observed in figures 4 (a)  and ( b ) .  

The crucial test of the new theory is whether it can accurately predict the surface 
pressure distribution on the sphere. Figures 6 (a)-(c) illustrate the excellent com- 

20-2 
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Separation, first order 

Separation, second order 

Separation, Navier-Stokes 

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 
-1.0 1 .o 

X 

I Y  

t 
Separation, first order 

Separation, third order 
aration, secondorder 

Separation, Navier-Stokes 

- 1.0 X 

FIGURE 4. Successive approximations to the displacement body for a sphere. -, first-order 
approximation; 0,  second-order approximation; A, third-order approximation. (a) Re, = 10. 
( b )  Re, = 40. 

parison with available Navier-Stokes solutions obtained using the new pressure 
hypothesis (6). The pressure predicted by the new theory begins to deviatefrom the 
numerical Navier-Stokes solutions in the region just prior to separation. This could 
be due either to the assumptions involved in the derivation of the pressure hypothesis 
or to the failure of the quartic profile adequately to describe the flow in this region. 

Also shown in these figures is the surface pressure predicted by second-order 
boundary-layer theory [equation ( 1 O ) ]  and conventional construction of the dis- 
placement body. It was pointed out earlier that (lo), in that it contains viscous 
corrections 0(6,), is equivalent to the streamwise momentum equation used in 
second-order axisymmetric boundary-layer theory. 

In  table 2 we show the separation angles (as measured from the forward 
stagnation point) obtained for various Reynolds numbers by solving the conventional 
boundary-layer equation (10) without co-ordinate straining (second-order boundary- 
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FIGURE 6 ( a ) .  For legend see p. 598. 

layer theory) and by solving (10) using the new pressure hypothesis. As may easily 
be seen from the table, the inclusion of just the higher-order viscous terms provides 
a small improvement over first-order axisymmetric boundary-layer theory when the 
conventional construction of the displacement body is used. At a Reynolds number 
of 100 (figure 6c) the higher-order curvature term in (10) provides a significant 
improvement in the predicted surface pressure without co-ordinate straining but 
a relatively poor prediction of the separation-point location. At a Reynolds number of 
10 (figure 6a)  the importance of the new pressure hypothesis is especially evident. 



59 8 M .  8. Kolansky, X. Weinbaum and R. Pfeffer 

0 20 40 60 80 100 120 140 160 180 
e 

0 
FIamE 6. Surface pressure distribution around a sphere. (a) Re, = 10. (b)  Re, = 40. (c)  Re, = 
100. -- , first-order approximation. (a ,  71) - - -, second-order approximation; - - -, 
second-order boundary-layer theory; - x -, Rimon t Cheng (1 969). (c) - - -, second-order 
boundary-layer theory; - - -, Rimon t Cheng (1969); - x -, Hamielec & Hoffman (1967). 

In  the present study we have been primarily concerned with determining the 
surface pressure up to the point of separation, since the fourth-order polynomial 
description given by (1  3) is a poor detailed representation of the flow in the separated 
region. The pressure a t  the rear stagnation point on the sphere could, therefore, not 
be used as the zero reference value as is commonly done in numerical Navier-Stokes 
solutions. Instead we have chosen the pressure at the forward stagnation point 
predicted by numerical Navier-Stokes solutions as the reference pressure for all 
sphere calculations. 

The dramatic improvement over second-order boundary-layer theory in the 
prediction of the surface pressure distribution achieved using the new pressure 
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Prandtl 

layer 
equations with 
conventional 

construction of 
displacement 

body 

115.9 
113.4 
111.6 
110.9 
109.98 
109.61 
109.6 

boundary- 

Second-order 
boundary- 

layer theory 

121.7 
118.4 
115.6 
114.2 
112.9 
112.2 
109.6 

TABLE 2 

Present Navier-Stokes 
theory, solutions 

second-order (Rimon & 
approximation Cheng 1969) 

163.0 167.6 
150.0 
139.5 144 
135.0 
130.0 127.5 
127.5 

hypothesis (see figures 6a-c) can be attributed to the greatly improved representation 
of the first-order displacement body that results from the present solution procedure. 
In  the conventional axisymmetric boundary-layer theory, where the first-order 
solution for the displacement body is based on the potential flow past the original 
body surface, separation occurs a t  approximately 109.6" from the forward stagnation 
point regardless of the Reynolds number. In  contrast, the stretching of the body 
co-ordinate implicit in the new pressure hypothesis leads in the first trial solution 
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FIGURE 8. Surface vorticity distribution around a sphere. Re, = 40. -, second-order 

approximation; 0, Rimon & Cheng (1969). 
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FIGURE 9 (a). For legend see facing page. 
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FIGURE 9 (a). For legend see facing page. 

to a reasonable prediction of the separation-point location as observed in figure 5.  The 
import'ance of the new pressure hypothesis is clearly demonstrated in figure 7, where 
we have compared the angular locations of the minimum surface pressure predicted 
by second-order boundary-layer theory and the present approximate theory with 
available Navier-Stokes numerical solutions. 
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X 

FIGURE 9. Velocity-profile development in the viscous layer around a sphere. 
(a) Re, = 10. ( b )  Re, = 40. - - -, displacement body, second-order approximation. 

In  figure 8 we show a typical surface vorticity distribution for the flow past a sphere 
a t  Re = 40. The agreement with exact Navier-Stokes solutions is excellent. 
Figures 9(a) and ( b )  show the velocity-profile development in the viscous layer and 
the growth of the boundary-layer outer edge up to separation at Reynolds numbers 
of 10 and 40 respectively. No difficulty is encountered in integrating the momentum- 
integral equation (10) through separation using the interaction pressure field. Thus if 
a more accurate family of separated flow profiles were constructed one should, in 
in theory, be able to obtain reasonable solutions for the wake separation bubble. This 
possibility is currently being studied. 

6. Additional results and comments 
The new theory has now been applied to a more general class of three-dimensional 

axisymmetric bodies : prolate spheroids, of which the sphere is a limiting case. These 
bodies are oriented such that their major axis is parallel to the flow. Figure 10 shows 
the displacement body obtained for a prolate spheroid of aspect ratio 10: 9 (major/ 
minor axis) at an Re of 100. Exact Navier-Stokes solutions due to Masliyah & 
Epstein (1970) exist for this case. Since this body shape is almost a sphere it was 
anticipated that a single source-sink pair would adequately model the displacement 
body. This proved to be the case, as can be seen in figure 10. Figure 11 compares the 
surface pressure distribution obtained using the new theory with the numerical 
Navier-Stokes solution of Masliyah & Epstein (1970). Figures 12 and 13 are for 
a prolate spheroid of aspect ratio 2: 1. In  this case it was necessary to use more 
boundary points (five) to obtain an adequate fit to the displacement body. The 
numerical solution of Masliyah & Epstein (1970) for the surface pressure distribution 
is shown in figure 13 for comparison. 

In summary, the new proposed approximate theory described in WKPG and the 
present investigation has been shown to be in very good agreement with a broad 
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t 4 

- 1  
X 

FIGURE 10. Stream-function fit of the displacement body for a prolate spheroid. Re, = 100, 
aspect ratio = 10:9. -, first-order approximation; 0, stream-function fit; *, match points. 

0 20 40 60 80 100 120 140 160 
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FIGURE 11. Surface pressure distribution around a prolate spheroid. Re, = 100, aspect 
ratio = 10: 9. --, first-order approximation; - - - , Masiliyah & Epstein (1970). 
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FIGURE 13. Surface pressure distribution around a prolate spheroid. Re, = 100, aspect ratio = 
2 : l .  __ , first-order approximation ; - - - , Masiliyah & Epstein (1970). 
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spectrum of numerical Navier-Stokes solutions for the flow past smoothly contoured 
bodies in the intermediate Reynolds number range where the body is semi-infinite or 
finite with a steady laminar wake. The theory can be easily applied to many boundary 
shapes for which published numerical Navier-Stokes solutions currently do not exist. 
The important fundamental contribution of the study is the improved understanding 
of the role and construction of the displacement body and the effect of centrifugal 
forces in thick viscous layers. 
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